Table of Contents

1. General Description ... 1
2. Safety instructions ... 3
3. Installation instructions .. 4
4. Things to consider ... 5
 4.1. Important warning .. 5
 4.2. DC loads with remote on/off terminals 5
 4.3. DC load: disconnecting the load with a BatteryProtect 5
 4.4. Charging the LiFePO4 battery with an additional battery charger 5
 4.5. Battery .. 6
5. System examples .. 7
6. Specifications ... 8
7. Appendix .. 9
 7.1. Appendix A ... 9
 7.2. Appendix B ... 10
1. General Description

A Smart BMS that protects the alternator (and wiring), and supplies up to 200A in any DC load (including inverters and inverter/chargers)

The Smart BMS 12-200 is intended for use with Victron Smart LiFePo4 batteries with M8 circular connectors. It supports up to 10 batteries in parallel (BTVs are simply daisy-chained). Can be used as a system on/off switch.

Starter battery Protection

This function is similar to that of a Cyrix Battery Combiner or Argo FET Battery Isolator. Current can flow to the LFP battery only if the input voltage (= voltage on the starter battery) exceeds 13V.

Additionally, current cannot flow back from the LFP battery to the starter battery, thus preventing eventual damage to the LFP battery due to excessive discharge.

Alternator and battery protection

The input current is electronically limited to approximately 90% of the fuse rating. A 100A fuse, for example, will therefore limit the input current to approximately 90A. (For fuse ratings and corresponding current limit please see table 1)

Choosing the right fuse will:

1. Protect the LFP battery against excessive charge current (important in case of a low capacity LFP battery).
2. Protect the alternator against overload in case of a high capacity LFP battery bank (most 12V alternators will overheat and fail if running at maximum output during more than 5 minutes).

Load/battery charger output-input (Power Port SYSTEM+)

This Power Port can be used to either charge or discharge the LFP battery (i.e. via a charger, an inverter or inverter/charger) with a maximum continuous current of 200A in both directions.

Can also be used as a load output, thus DC loads can be connected directly to this port. The port is short-circuit protected with a peak discharge current of 400A.

The Smart BMS will make sure that the battery discharge will cut-off in case of imminent cell under voltage.

The Smart BMS will enable charging through this port, but no charge algorithm can be applied internally.

Li-ion battery protection

Excessive input voltage and transients are regulated down to a safe level.

The Smart BMS will stop charging in case of cell over voltage or over temperature.

It has three outputs, similar to the smallBMS:

Load Disconnect output

The Load output is normally high and becomes free floating in case of imminent cell under voltage (default 2.8V/cell, adjustable on the battery between 2.6V and 2.8V per cell). Maximum current: 10mA. The Load output can be used to control the remote on/off input of a Battery Protect, inverter, DC-DC converter or other loads.

Pre-Alarm output

The pre-alarm output can be used as warning when the battery voltage is low and it will trip shortly before the Load Disconnect output is disabled due to cell under voltage.

The pre-alarm output may be used to drive a relay, LED or Buzzer. It can be configured as continuous or intermittent signal.

The pre-alarm output is normally free floating and becomes high in case of imminent cell under voltage (default 3.1V/cell, adjustable on the battery between 2.85V and 3.15V per cell). Maximum current: 1A (not short circuit protected.)

The minimum delay between pre-alarm and load disconnect is 30 seconds.

Charge disconnect output

The Charge disconnect output is normally high and becomes free floating in case of imminent cell over voltage or over temperature. Maximum current: 10mA. The Charge disconnect output is not suitable to power an inductive load such as a relay coil. The Charge disconnect output can be used to control: The remote on/off of a charger, a Cyrix-Li-Charge relay, a Cyrix-Li-ct Battery Combiner.

(Note: in some cases, an interface cable will be needed, please see the manual.)

A non-inverting or inverting on/off cable may be required, please consult the appendix.

Remote on/off input, also configurable as system on/off
The remote on/off input controls the charging via the alternator, while the BMS functionality will remain active regardless of the remote on/off state.

The remote on/off can also be used as system on/off switch. This can be configured with VictronConnect.

The remote on/off (or system on/off) consists of two terminals: Remote L and Remote H.

A remote on/off switch or relay contact can be connected between L and H.

Alternatively, terminal H can be switched to battery plus, or terminal L can be switched to battery minus.

LED indicators (from left to right)

- Green (1): Alternator Charging
- Red (2): Over-Temperature protection of the Smart BMS
- Green (3): Smart BMS is active
- Blue (4): blinking – Bluetooth broadcasting, ON – connection established
- Yellow (5): Charge disconnect output is enabled
- Orange (6): Load disconnect output is enabled
- Green (7): Charging from System+ port enabled
2. Safety instructions

Installation must strictly follow the national safety regulations in compliance with the enclosure, installation, creepage, clearance, casualty, markings and segregation requirements of the end-use application. Installation must be performed by qualified and trained installers only. Switch off the system and check for hazardous voltages before altering any connection.

1. Do not open the Lithium Ion Battery.
2. Do not discharge a new Lithium Ion Battery before it has been fully charged first.
3. Charge only within the specified limits.
4. Do not mount the Lithium Ion Battery upside down.
5. Check if the Li-Ion battery has been damaged during transport.
3. Installation instructions

1. Mount the Smart BMS preferably on a vertical surface, for optimal cooling.
2. Determine the rating of fuse (see figure and table 1). The fuse doubles as a shunt, thus the Smart BMS will limit the input current according to the rating of this fuse. For fuse and corresponding current limit please see table 1.
3. Choosing the right fuse will prevent overheating of the alternator and/or DC cabling.
4. Disconnect the cabling from the minus pole of the starter battery.
5. Pull off the REMOTE on/off connector to prevent unwanted switching of the Smart BMS.
6. Install and connect the fuses and all electrical cabling, leave the minus poles of the Li-ion batteries and starter battery disconnected. **Make sure that the M8 nuts of the fuse are properly tightened.**
7. Daisy-chain the battery control cables between the Li-ion batteries and connect to the Smart BMS.
8. Connect the GND cabling to the minus of Li-ion batteries and the starter battery.
9. Reinsert the REMOTE on/off connector on the Smart BMS.

The Smart BMS is now ready for use.

Table 1: charge current per fuse rating

<table>
<thead>
<tr>
<th>Fuse ratings</th>
<th>Max charge current</th>
</tr>
</thead>
<tbody>
<tr>
<td>125A</td>
<td>100A</td>
</tr>
<tr>
<td>100A</td>
<td>90A</td>
</tr>
<tr>
<td>80A</td>
<td>60A</td>
</tr>
<tr>
<td>60A</td>
<td>50A</td>
</tr>
<tr>
<td>2 x 30A</td>
<td>40A</td>
</tr>
<tr>
<td>2 x 20A</td>
<td>25A</td>
</tr>
<tr>
<td>2 x 15A</td>
<td>20A</td>
</tr>
<tr>
<td>2 x 10A</td>
<td>12A</td>
</tr>
<tr>
<td>2 x 7.5A</td>
<td>9A</td>
</tr>
</tbody>
</table>
4. Things to consider

4.1. Important warning

Li-ion batteries are expensive and can be damaged due to over discharge or over charge.

Damage due to over discharge can occur if small loads (such as: alarm systems, relays, standby current of certain loads, back current drain of battery chargers or charge regulators) slowly discharge the battery when the system is not in use.

In case of any doubt about possible residual current draw, isolate the battery by opening the battery switch, pulling the battery fuse(s) or disconnecting the battery plus when the system is not in use.

A residual discharge current is especially dangerous if the system has been discharged completely and a low cell voltage shutdown has occurred. After shutdown due to low cell voltage, a capacity reserve of approximately 1Ah per 100Ah battery capacity is left in the battery. The battery will be damaged if the remaining capacity reserve is drawn from the battery. A residual current of 10mA for example may damage a 200Ah battery if the system is left in discharged state during more than 8 days.

4.2. DC loads with remote on/off terminals

DC loads must be switched off or disconnected in case of imminent cell under voltage.

The Load Disconnect output of the Smart BMS can be used for this purpose.

The Load Disconnect is normally high (equal to battery voltage) and becomes free floating (= open circuit) in case of imminent cell under voltage.

DC loads with a remote on-off terminal that switches the load on when the terminal is pulled high (to battery plus) and switches it off when the terminal is left free floating can be controlled directly with the Load Disconnect output.

See appendix for a list of Victron products with this behavior.

For DC loads with a remote on/off terminal that switches the load on when the terminal is pulled low (to battery minus) and switches it off when the terminal is left free floating, the Inverting remote on-off cable can be used. See appendix.

Note: please check the residual current of the load when in off state. After low cell voltage shutdown a capacity reserve of approximately 1Ah per 100Ah battery capacity is left in the battery. A residual current of 10mA for example may damage a 200Ah battery if the system is left in discharged state during more than 8 days.

4.3. DC load: disconnecting the load with a BatteryProtect

A Battery Protect will disconnect the load when:

• input voltage (= battery voltage) has decreased below a preset value, or when -
• the remote on/off terminal is pulled low.

The Smart BMS can be used to control the remote on/off terminal of a BatteryProtect. Contrary to a Cyrix or contactor, a BatteryProtect can start a load with a large input capacitor such as an inverter or a DC-DC converter.

4.4. Charging the LiFePO$_4$ battery with an additional battery charger

Battery charging must be reduced or stopped in case of imminent cell over voltage or over temperature.

The Charge Disconnect output of the Smart BMS can be used for this purpose.

The Charge Disconnect is normally high (equal to battery voltage) and switches to open circuit state in case of imminent cell over voltage.

Battery chargers with a remote on-off terminal that activates the charger when the terminal is pulled high (to battery plus) and deactivates when the terminal is left free floating can be controlled directly with the Charge Disconnect output. See appendix for a list of Victron products with this behavior.

Battery chargers with a remote terminal that activates the charger when the terminal is pulled low (to battery minus) and deactivates when the terminal is left free floating, the Inverting remote on-off cable can be used. See appendix.

Alternatively, a Cyrix-Li-Charge can be used:
The Cyrix-Li-Charge is a unidirectional combiner that inserts in between a battery charger and the LiFePO₄ battery. It will engage only when charge voltage from a battery charger is present on its charge-side terminal. A control terminal connects to the Charge Disconnect of the Smart BMS.

4.5. Battery

In case of several batteries in parallel and/or series configuration, the two M8 circular connector cord sets of each battery should be connected in series (daisy chained). Connect the two remaining cords to the Smart BMS.
5. System examples

Figure 1: Application example with a MultiPlus and a MPPT

Figure 2: Application example with a MultiPlus and a BatteryProtect
6. Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart BMS 12V / 200A</td>
<td></td>
</tr>
<tr>
<td>Maximum charge current, Port Alternator</td>
<td>100A (with a 125A fuse)</td>
</tr>
<tr>
<td>Maximum charge current, Port SYSTEM+</td>
<td>200A</td>
</tr>
<tr>
<td>Maximum discharge current, Port SYSTEM+</td>
<td>200A</td>
</tr>
<tr>
<td>Peak discharge current</td>
<td>400A</td>
</tr>
<tr>
<td>Input voltage to start charging</td>
<td>>13V</td>
</tr>
<tr>
<td>Current consumption, remote on</td>
<td>17.5 mA (excluding Load output and Charge output current)</td>
</tr>
<tr>
<td>Current consumption, remote off</td>
<td>6.5 mA (BMS functionality still active)</td>
</tr>
<tr>
<td>Current consumption, remote off</td>
<td>4.5 mA (BMS functionality disabled)</td>
</tr>
<tr>
<td>Load disconnect output</td>
<td></td>
</tr>
<tr>
<td>Source current limit: 10mA (short circuit protected)</td>
<td></td>
</tr>
<tr>
<td>Sink current: 0A (output free floating)</td>
<td></td>
</tr>
<tr>
<td>Charge disconnect output</td>
<td></td>
</tr>
<tr>
<td>Source current limit: 10mA (short circuit protected)</td>
<td></td>
</tr>
<tr>
<td>Sink current: 0A (output free floating)</td>
<td></td>
</tr>
<tr>
<td>Pre-alarm output</td>
<td></td>
</tr>
<tr>
<td>Normally low</td>
<td></td>
</tr>
<tr>
<td>High (Vbat) in case of alarm, max. 1A</td>
<td>(not short circuit proof)</td>
</tr>
<tr>
<td>Remote (or System) on/off:</td>
<td></td>
</tr>
<tr>
<td>Remote L and Remote H</td>
<td>Use modes:</td>
</tr>
<tr>
<td></td>
<td>1. ON when the L and H terminal are interconnected</td>
</tr>
<tr>
<td></td>
<td>2. ON when the L terminal is pulled to battery minus (V < 5V)</td>
</tr>
<tr>
<td></td>
<td>3. ON when the H terminal is high (V > 3V)</td>
</tr>
<tr>
<td></td>
<td>4. OFF in all other conditions</td>
</tr>
<tr>
<td>ENCLOSURE</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>2kg</td>
</tr>
<tr>
<td>Dimensions (hxwxd)</td>
<td>65 x 120 x 340 mm</td>
</tr>
<tr>
<td>STANDARDS</td>
<td></td>
</tr>
<tr>
<td>Emission</td>
<td>EN 61000-6-3, EN 55014-1</td>
</tr>
<tr>
<td>Immunity</td>
<td>EN 61000-6-2, EN 61000-6-1, EN 55014-2</td>
</tr>
<tr>
<td>Automotive Directive</td>
<td>ECE R10-5</td>
</tr>
</tbody>
</table>
7. Appendix

7.1. Appendix A

1. Loads which can be controlled directly by the Load Disconnect output of the Smart BMS
 Inverters:
 All Phoenix inverters VE.Direct and Phoenix Inverters Smart:
 Connect the LOAD DISCONNECT to the left-hand terminal (H) of the 2-pole connector
 DC-DC converters:
 All Tr type DC-DC converters with remote on/off connector, and Orion 12/24-20
 Connect the LOAD DISCONNECT the right-hand terminal of the 2-pole connector
 Battery Protect and Smart Battery Protect
 Connect the LOAD DISCONNECT to terminal 2.1 (right hand terminal) for the Battery Protect and H pin for the Smart Battery
 Protet of the 2-pole connector
 Cyrix -Li-Load
 Connect the LOAD DISCONNECT to the control input

2. Loads for which an inverting remote on-off cable is needed
 (article number ASS030550100 or -120) All Phoenix VE.Bus inverters and VE.Bus Inverter Compact rated at 1200VA or more.

3. Solar charge controllers which can be controlled directly by the Charge Disconnect output
 BlueSolar MPPT 150/70 and 150/80 CAN-bus
 Connect the CHARGE DISCONNECT to the left-hand terminal of the 2-pole connector (B+)
 SmartSolar MPPT 150/45 and higher, 250/60 and higher
 Connect the CHARGE DISCONNECT to the right-hand terminal (marked +) or the left-hand terminal (marked H) of the 2-pole connector

4. Solar charge controllers for which a VE.Direct non inverting remote on-off cable is needed
 (article number ASS030550320)
 All BlueSolar MPPT models, except the BlueSolar MPPT 150/70 and 150/80 CAN-bus
 SmartSolar MPPT up to 150/35

5. Battery Chargers
 Phoenix Smart IP43 Chargers
 Connect the CHARGE DISCONNECT to the left-hand terminal (H) of the 2-pole connector
 Skylla TG battery chargers
 Use a non inverting remote on-off cable.
 (article number ASS030550200)
 Skylla-i battery chargers
 Use a Skylla-i remote on-off cable.
 (article number ASS030550400)
 Other battery chargers
 Use a Cyrix-Li-Charge or connect the charger to the primary side of the Smart BMS.

6. MultiPlus
 MultiPlus 500VA – 1600VA & MultiPlus Compact 800VA – 2kVA
 If these MultiPlus models are not connected directly to the System+ port, they can also be controlled from the Load Disconnect and Charge Disconnect outputs by using the Smart BMS CL 12-100 to MultiPlus cable (article number ASS070200100).
 This cable must be wired to the remote on/off connector of the MultiPlus
 • When used with the MultiPlus 500VA-1600VA models connect the black wire to the ON terminal and the red wire to the (+) terminal.
 • When used with the MultiPlus Compact 800VA-2kVA models connect the black wire to the middle terminal and the red wire to the right (IN) terminal.
 Both the Load Disconnect and Charge Disconnect outputs of the BMS must be in ‘High’ state in order for the MultiPlus to operate. After shutdown due to low battery voltage, run the alternator or use a battery charger on the primary side of the BMS to reset the system. The MultiPlus will then switch on and start charging (if connected to an AC power source).
 MultiPlus 3kVA or more
 For more info on how to configure the MultiPlus to work with the Smart BMS 12-200 please refer to the document on our website: https://www.victronenergy.com/upload/documents/Manual-Connecting-other-lithium-battery-systems-to-Multis-and-Quattros-EN.pdf
 The Load Disconnect and Charge Disconnect Outputs will be wired to the MultiPlus with two inverting remote on-off cables (article number ASS030550100) as shown below.
7. **MultiPlus-II**

The MultiPlus-II models can be controlled from the Load Disconnect and Charge Disconnect outputs by using the Smart BMS CL 12/100 to MultiPlus cable (article number ASS070200100). This cable must be wired to the remote on/off connector of the MultiPlus-II (connect the black wire to the lower (-) terminal and the red wire to the upper (+) remote on-off terminal). Both the Load Disconnect and Charge Disconnect outputs of the BMS must be in ‘High’ state in order for the MultiPlus-II to operate. After shutdown due to low battery voltage, run the alternator or use a battery charger on the primary side of the BMS to reset the system. The MultiPlus-II will then switch on and start charging (if connected to an AC power source).

7.2. **Appendix B**

Error/ Warning Codes

- **E-B30: Calibration failure**

 Internal malfunction – calibration data failure/missing

 Contact dealer for support – Fault is not user correctable and SBP requires replacement.
E-B31: Configuration failure
Internal malfunction - configuration data failure/missing

To recover the Smart BMS from this condition:
1. Reset the unit to factory defaults under - Settings > More options > Reset to defaults
2. Disconnect all power and wait 3 minutes before reconnecting
3. Reconfigure the unit as required

E-B32: Battery BMS Cable not connected or defect
Detached or defect battery BMS cable (with M8 circular connector) detected
When BMS cables are neither detached nor defect, this can happen when the pre-alarm feature is enabled while using batteries not supported this feature.

1. Check if battery supports pre-alarm feature. If not:
2. Go to settings page and disable pre-alarm feature.

E-B33: Reference Voltage failure
Internal malfunction - reference voltage failure/missing

Contact dealer for support - Fault is not user correctable and Smart BMS requires replacement

A-A12: Short Circuit
Short-circuit protection is activated in the event of a short circuit, an overload condition or excessive inrush current.

1. Check for a potential short circuit condition.
2. Confirm that the load current draw does not exceed the Smart BMS current rating.
3. Check for loose/high resistance connections and ensure that appropriate gauge wiring is used in the installation.

A-B11: Under voltage
Under voltage protection is activated in the event that the battery does not allow discharge

1. Switch off/disconnect loads and recharge the battery
2. Check charging system and battery for proper operation

A-B15: Over temperature
Over temperature protection is activated in the event of excessive internal temperature

1. Make sure that the correct fuse rating has been selected. Choosing the right fuse will also prevent overheating of the alternator and/or DC cabling.
2. Check for loose/high resistance connections and ensure that appropriate gauge wiring is used in the installation
3. Do not install the Smart BMS unit in a location exposed to high temperature or radiant heat relocate Smart BMS to a cooler position or provide additional active cooling

W-B12: Under voltage warning
Urgent intervention required to prevent system shutdown

1. Switch off/disconnect loads and recharge the battery
2. Check charging system and battery for proper operation