

CCGX

CCGX Hardware and software introduction

Hardware

The CCGX is based on the Technexion board TAM-3517, which is using the Texas Instruments Sitara AM3517, containing a ARM Cortex-A8 microprocessor:

Software

Linux

CCGX image / distro is based on Poky.

Poky can be thought of as a reference distribution. It is maintained by an organisation called the Yocto Project and based on Open Embedded.

Taken directly from the Yocto Project website (www.yoctoproject.org): "...The Yocto Project™ is an open source collaboration project that provides templates, tools and methods to help you create custom Linux-based systems for embedded products regardless of the hardware architecture". Some of their projects that are relevant to the CCGX are Poky and Bitbake.

Open Embedded is a build environment for embedded linux, and has all kinds of tools, mechanisms and recipes to build the Linux kernel and make a full embedded Linux rootfs. Maintained version are listed here, <https://wiki.yoctoproject.org/wiki Releases>.

To build the distro yourself, see: <https://github.com/victronenergy/venus>

Victron software

we are using a mixture of C, C++, QML (for the user interface) and Python. As a main data exchange, to share values such as voltages, as well as settings and other data, we use D-Bus. D-bus is for inter process communication, see [google](#) and the [D-Bus page on wikipedia](#) for more information. This diagram gives a good overview of the whole thing:

Product processes

Processes that interface to products, using the different protocols. These processes make the information available on the D-Bus.

- VE.Can to dbus
written in C, reads and writes to the VE.Can comm. port.
- mk2dbus
written in C, reads and write to VE.Bus (Victron inverter/charger protocol).
- VE.Direct to D-Bus
written in C, reads/writes to serial connected devices, such as the BMV and MPPT solar chargers.
- gps_dbus
also written in C. Open source: https://github.com/victronenergy/dbus_gps.
- dbus_qwacs
C++, using the QT library. Reads data from wireless AC sensors connected via an Ethernet-DECT gateway. Open source: https://github.com/victronenergy/dbus_qwacs
- dbus-fronius
written in C++, communications to Fronius PV inverters via LAN/Ethernet. Open source: https://github.com/victronenergy/dbus_fronius
- dbus-motordrive
https://bitbucket.org/oceanvolt/dbus_motordrive

Other processes

- **gui**
Written in C++ and QML, uses QT. Takes care of the user interface: buttons and the display
- **vrmlogger**
Written in Python, takes data from the dbus and submits it to the VRM Portal.
<https://vrm.victronenergy.com/>
- **localsettings**
Written in Python, takes care of user settings. All other processes read and write their settings through this daemon via D-Bus. The daemon is an interface between D-Bus and the file /data/conf/settings.xml. Open source: <https://github.com/victronenergy/localsettings>.
- **dbus_modbustcp**
Written in C++, uses QT. Modbustcp server that can be used to access data of all products connected to the CCGX. See our [Data communication whitepaper](#) for more information. Open source: https://github.com/victronenergy/dbus_modbustcp
- **dbus-systemcalc-py**
Written in Python, publish PV totals and other system readings on D-Bus. The overviews on the CCGX get their information from this service (com.victronenergy.system). Open source: <https://github.com/victronenergy/dbus-systemcalc-py>

Source code

As visible in above project list, part of the sources is already available. All that is open source is available on <https://github.com/victronenergy/>. The rest is still on Victrons internal git servers, and where possible slowly being moved to github.

Plans currently being worked on

- Have a local version of <https://vrm.victronenergy.com> including database run on the CCGX itself, using php/hiawatha and sqlite.
- Secure VNC (http://www.victronenergy.com/live/ccgx_ccgx_vnc), and make it useable remotely when the CCGX is behind a firewall.

Future plans

Functionality wise, the plans are (in random order):

- Make support for more types of sensors (temp sensors etc)
- Be able to use BMV's to read current from for example a dc wind generator, and show on overview and VRM portal
- Make more of the project open source
- Further mature alarms, and add SMS and email notifications
- Make it usable as a UPS-replacement. local website, emailalerts, battery minutes remaining, etc.
- Add SNMP (UPS-MIB)

Other tips

- to make a screenshot, first press and hold the down button, and then press the up button. The screenshot will be saved to /opt/color-control/gui/. It will overwrite the previous one.

And see [color_control_gx](#) for more CCGX development information

DISQUS

~~DISQUS~~

From:
<https://www.victronenergy.com/live/> - **Victron Energy**

Permanent link:
https://www.victronenergy.com/live/open_source:ccgx:start?rev=1440024922

Last update: **2015-08-20 00:55**

