2025-11-11 11:21 1/9 setup_development_environment

Setting up your PC as a CCGX development
environment

This page explains setting up a cross compiling environment for the CCGX. Cross compiling means
that the software is built/compiled on a different system (your computer) than the one on which it is
executed (your CCGX).

Notes:

e rebuilding the whole rootfs and image from scratch is something entirely different, explained
here: https://github.com/victronenergy/venus

* this page assumes your host pc / virtual runs linux

e it is often faster to do most development and debugging of software on your pc first. So no
cross-compiling required at first. See here.

e when looking for ordinary packages, such as git, gdb, or something else, as opposed to your
own development, make sure to have a look at all pre-compiled and available packages too.
Login to the ccgx and run this command to see available packages:

opkg list

e another alternative: compile on the ccgx itself. Use opkg to install git, make and gcc, then
checkout whatever source you want to compile. Easier than cross compiling, but can be a bit
slower :)

To cross compile, you need to setup an SDK, which contains the gcc compiler, as well as all header
files and other setup of the CCGX.

More info about what you are installing here:
http://www.yoctoproject.org/bulk/devday-eu-2014/ypdd14-hudson-sdk.pdf

BASICS - command line cross-compile

1. Prerequisites

Start with the basics: cross-compile a project from the command line. This example has been made
on Ubuntu.

Then replace dash with bash:
sudo dpkg-reconfigure dash (and choose NO)
Then install all the prerequisites. For (X)Ubuntu do:

sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib
build-essential chrpath socat libsdl1l.2-dev xterm

Victron Energy - https://www.victronenergy.com/live/

https://github.com/victronenergy/venus
http://www.yoctoproject.org/bulk/devday-eu-2014/ypdd14-hudson-sdk.pdf

Last
update:
2017-12-12
10:17

open_source:ccgx:setup_development_environment https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1513070252

For other distros, see the Yocto documentation for the requirements.

2. Install the SDK

The SDK includes the gcc compiler for the ARM processor, as well as all the needed libraries and
header files.

First, download the latest sdk here.

e Cortex A8 for the Venus GX and CCGX
e Cortex A7 for the Raspberrypi

The file needed is the one ending with .sh.

There is no need to worry about it not being the same version as the latest available CCGX firmware
version. Using the latest SDK available will be fine.

Then install it. It will ask where you want to have it installed, make sure to install the ccgx sdk in
its default location!. And, in these examples, make sure to replace v1.40 to the version you
downloaded:

chmod u+x ./venus-jethro-x86 64-arm-cortexa8hf-neon-toolchain-qte-v2.07.sh
sudo ./venus-jethro-x86 64-arm-cortexa8hf-neon-toolchain-qte-v2.07.sh

Make a symlink /opt/venus/current
sudo ln -s /opt/venus/jethro-v2.07-arm-cortexa8hf-neon /opt/venus/current

Now to use this SDK, the following command is to be executed in the terminal where you also call
make or start qtcreator. This has to be done every time, but you are free to automate it of course:

. /opt/venus/current/environment-setup-cortexa8hf-vfp-neon-ve-linux-gnueabi

3. Cross compile your first project

Create a file helloworld.c with the following content:
#include <stdio.h>

int main()

{

puts("hello world");
return 0;

The following is needed to compile above for a ccgx

https://www.victronenergy.com/live/ Printed on 2025-11-11 11:21

https://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html#yp-resources
https://updates.victronenergy.com/feeds/venus/release/sdk/

2025-11-11 11:21 3/9 setup_development_environment

first setup the environment:
. /opt/venus/jethro-v2.07-arm-cortexa8hf-neon/environment-setup-cortexa8hf-
vfp-neon-ve-linux-gnueabi

$CC helloworld.c -o helloworld
The resulting binary is now called helloworld. This is an ARM executable, this can be checked with
file helloworld

This should report something like: helloworld: ELF 32-bit LSB executable, ARM, EABI5 version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.16, not stripped

4. Cross compiling QT projects

QT projects, which are projects using 1 or more QT libraries, rely on the gmake engine. Compiling a
projects works like this:

first setup the environment:
. /opt/venus/jethro-v2.07-arm-cortexa8hf-neon/environment-setup-cortexa8hf-
vfp-neon-ve-linux-gnueabi

change directory to the location of the gmake file (.pro extension)
cd <path to project file>

Run gmake to create a makefile. Use the gmake supplied with the SDK!
/opt/venus/jethro-v2.07-arm-cortexa8hf-neon/sysroots/x86 64-ve-
linux/usr/bin/gmake <project file>.pro

Build the project
make

5. Cross compiling velib projects

(and maybe linux and uboot since they also use CROSS_COMPILE).

first setup the environment:
. /opt/venus/jethro-v2.07-arm-cortexa8hf-neon/environment-setup-cortexa8hf-
vfp-neon-ve-linux-gnueabi

unset CROSS COMPILE

Its related to
http://git.yoctoproject.org/cgit.cgi/poky/commit/?id=678e8798ebe0f4fd1lbd347d
b136f1499b8fe00c9

Reason: if CROSS COMPILE exists, velib make rules will redefine CC. For

more info
on that, see README make.txt in velib.
And, to help the search engines: if you don't do this, --sysroot won't be

Victron Energy - https://www.victronenergy.com/live/

Last

;g??f%_lz open_source:ccgx:setup_development_environment https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1513070252

10:17

set,
which leads to a stdint.h missing error in the compiler.

this is not necessary if used velib version includes this patch:

#
https://github.com/victronenergy/velib/commit/21f0d3a1094874883fedfa91523ae0
77495ba07b

export CROSS COMPILE=

make

Note that, besides above instruction, you'll -as always- also need to setup the build after checking a
project out. Typically by running ./ext/velib/mk/init_build.sh

LUXURY - now that you have done the basics, go for the IDE

Now that you have successfully compiled a project from the command-line, time for the next step.
0. Install QT Creator

sudo apt-get install qtcreator (or take latest from gt website)
To start QTCreator, start a new terminal, and execute the command
. /opt/venus/current/environment-setup-armv7a-vfp-neon-ve-linux-gnueabi

And then start gtcreater: make sure to start it from the same terminal where you typed .
/opt/venus/..!!

gtcreator

1. Configuring QT Creator

1.1 Add the cross-compiler

Goto Options—Build & Run-»Compilers, and press Add. Select GCC as the type. And point it to:

/opt/venus/current/sysroots/i686-ve-linux/usr/bin/armv7a-vfp-neon-ve-linux-
gnueabi/arm-ve-linux-gnueabi-gcc

Result will look like this:

https://www.victronenergy.com/live/ Printed on 2025-11-11 11:21

https://www.victronenergy.com/live/_media/open_source:ccgx:add-compiler.png

2025-11-11 11:21 5/9 setup_development_environment

* Options + X
[Filter Build & Run

[i] Environment | General Kits QtVersions Compilers | Debuggers CMake

Text Editor Name Type Add »
g FakeVim ¥ Auto-detected

GCC (x86 32bit in fusr/bin) GCC Ic'oil

@ Help ¥ Manual Remous
GCC-cogx [clale
{} C+t+

.r_;l Qt Quick

()* Build & Run

a Debugger

f Designer

Bl Analyzer Narme: |GCC—cch

Versian Cantral Compiler path: L|_|x.n‘usr';’bin.n‘armv?a-vfp-neon-ve-lin|.|x-gr|ueabifarm-\.re-linux-gnueabi-gcc
"E’ Android Platform codegen flags: |

sansc QNX Platform linker flags: |

I Devices ABL: |arm—|inu; 2|[arm 2 |-| linux = |-|generic = |-|elf -
Code Pasting

W o | o

1.2 Add the debugger

Same screen, but one tab to the right: Debuggers. Click add and point it to:

/opt/venus/current/sysroots/i686-ve-linux/usr/bin/armv7a-vfp-neon-ve-linux-
gnueabi/arm-ve-linux-gnueabi-gdb

1.3 Add the Qt version

Same screen, but then one tab to the left, Qt Versions. Point it to

/opt/venus/current/sysroots/i686-ve-linux/usr/bin/qmake

1.4 Prepare your CCGX

e Arrange root access.

Its not, or no longer, necessary to install gdbserver on the CCGX, as it is already installed by default.

1.5 Add the device to qtcreator

Victron Energy - https://www.victronenergy.com/live/

https://www.victronenergy.com/live/ccgx:root_access

Last
update:
2017-12-12
10:17

open_source:ccgx:setup_development_environment https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1513070252

Add device, see screenshot.

(o .
. Environment

(o] ()

192.168.4.162

a Version Control 10000-10100
i} Android

— EEN -

Code Pasting
- Leave empty fo lo...
) Qbs

1.6 Add a Kit

Next add a new kit:

* select the Compiler, Debugger and Qt Version which you have created in the previous steps.
e select a sysroot: /opt/venus/current/sysroots/armv7a-vfp-neon-ve-linux-gnueabi

End result will look like this:

https://www.victronenergy.com/live/ Printed on 2025-11-11 11:21

https://www.victronenergy.com/live/_detail/open_source:ccgx:qtcreator_devices.png?id=open_source%3Accgx%3Asetup_development_environment
https://www.victronenergy.com/live/_media/open_source:ccgx:add-kit.png

2025-11-11 11:21

7/9 setup_development_environment

-

Options + X

| Build & Run

@ Environment

,_V] Qt Quick

a Debugger

X Designer
B Analyzer

Version Control

i) Android
san QMY

i Devices
Code Pasting

2 Try it

General | Kits | QtVersions Compilers Debuggers CMake

MName Add
¥ Auto-detected

Desktop Qt 5.5.1 GCC 32bit | Clone |
v Manua| Remaove

ccgx (default)

Make Default

Name: |ccg): | El
File system name: | |
Device type: | Generic Linux Device -
Device: | Generic Linux Device (default for Generic Linux) +| | Manage.. |
Sysroot: | roptivenussecgx-current/sysroots/armv7a-vfp-neon-ve-linux-gnueabi | | Browse..
Compiler: | GCC-cegx +| | Manage.. |
Environment: Mo changes to apply. Change...
Debugger: [cogx 2] | Manage.. |
Qt version: [Ot 4.8.3 (System) +| | Manage... |
Qt mkspec: | |
CMake Tool: | | Manage... |

ooy et D

Now you are ready to start compiling. Open a QT project file (.pro extension) and chose the CCGX kit,
and chose Build—Build Project. If you get an error message 'c: Command not found', you probably
forgot to run the environment script before starting QT Creator.

After a successful build deploy the executable to the CCGX (Build—Deploy project). Note that it is not
possible to overwrite an executable that is currently running. So, for this gui example, make sure to
first stop the gui on the ccgx:

svc -d /service/gui

Cross-compile run:

Executable on device: /opt/color-control/gui

3 Notes

When working on a velib project, make sure to change these settings in the Kit:

vk wh -

Remove gmake from build steps in the kit

Disable shadow build

Add ARCH=arm HOST_ABI=gnueabi to the Make arguments of the build steps
Probably you need to unset the CROSS_COMPILE variable, see basic section above.
For the debug build, also add BUILD=debug

Victron Energy - https://www.victronenergy.com/live/

Last
update:
2017-12-12
10:17

open_source:ccgx:setup_development_environment https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1513070252

6. Add the same to the clean steps

And if you are going to build release builds with gtcreator, do more or less the same for that build
config.

End result will look like this:

| AddKit |
NSRS Desktop Qt 5.5.1 GCC 32bit
| Manage Kits... | Build | Run Build

Edit build configuration: IDebug = Add v || Remove || Rename..
General
Shadow build: [
Build directory: |/home/efrank/dev/dbus_gps/software
Build Steps
Make: make BUILD=debug ARCH=arm HOST_ABI=gnueabi in /fhome/efrank/dev/dbus_gps/software Details &
Override /usr/bin/make: | ' | Browse.. |
Make arguments: IBUILD=deI:|ug ARCH=arm HOST_ABI=gnueabi |

| Add Build Step = |

Clean Steps
Make: make BUILD=debug ARCH=arm HOST_ABI=gnueabi clean in /fhome/efrank/dev/dbus_gps/software Details &
Override /usr/bin/make: | ' | Browse.. |
Make arguments: I BUILD=debug ARCH=arm HOST_ABI=gnueabi clean |

| Add Clean Step ~ |
Build Environment

Use System Environment and

Set TARGET to ccgx ; Details =

More bits and pieces that might come in handy

Mount CCGX file system locally

To save yourself some time copying files back and forth between your PC and your CCGX, for example
while editing Python code, use sshfs to mount the CCGX drive to your local machine:

mkdir ~/rem

https://www.victronenergy.com/live/ Printed on 2025-11-11 11:21

2025-11-11 11:21 9/9 setup_development_environment

sshfs root@ccgx:/opt/color-control ~/rem

Use fusermount -u PATH to unmount it again. or just reboot your machine.
Developing and running on your PC instead of immediately on the target

Developing, running, debugging a module on your (Linux) PC is often much faster than first having it
uploaded to the CCGX everytime you want to run it. And the good news is that it is perfectly possible.

Most of our modules will run perfectly on a pc: localsettings, dbus_gps, dbus_modbustcp,
dbus_fronius, etcetera. Even the gui runs on a pc, but that is a bit more difficult since it needs some
changes which we made to the qt libraries.

Most -perhaps even all- of our D-Bus implementations (C, Cpp, Python, etc) automatically choose the
Session D-Bus instead of the System D-Bus which is used on the ccgx. This is done at either compile-
or run-time. To see what is going on on the D-Bus, use the DBusCli command-line tool. Make sure to

omit the -y commandline parameter. Tips and tricks for command line D-Bus access here.

For some modules you'll need to run localsettings on your pc. Github repo including explanation of
what it is is here. Look for localsettings on this page for instructions on setting it up. Note that it
shouldn't be necessary to change the dbus config files! Since it will be using the (open) session dbus,
and not the system dbus which is usually locked down.

DISQUS

~~DISQUS~~

From:
https://www.victronenergy.com/live/ - Victron Energy

R

Permanent link: K :al!‘. - ,r ;
https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1513070252 I’E_Lﬂ.ﬂ ‘
]

Last update: 2017-12-12 10:17

T

Victron Energy - https://www.victronenergy.com/live/

https://github.com/victronenergy/qt/commits/4.8.3_ve
https://github.com/victronenergy/qt/commits/4.8.3_ve
http://code.google.com/p/dbus-tools/wiki/DBusCli
https://www.victronenergy.com/live/open_source:ccgx:commandline
https://github.com/victronenergy/localsettings
https://www.victronenergy.com/live/open_source:ccgx:installing_ccgx_func_on_raspberry_pi
https://www.victronenergy.com/live/
https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1513070252

	Setting up your PC as a CCGX development environment
	BASICS - command line cross-compile
	1. Prerequisites
	2. Install the SDK
	3. Cross compile your first project
	4. Cross compiling QT projects
	5. Cross compiling velib projects

	LUXURY - now that you have done the basics, go for the IDE
	0. Install QT Creator
	1. Configuring QT Creator
	1.1 Add the cross-compiler
	1.2 Add the debugger
	1.3 Add the Qt version
	1.4 Prepare your CCGX
	1.5 Add the device to qtcreator
	1.6 Add a Kit

	2 Try it
	3 Notes

	More bits and pieces that might come in handy
	Mount CCGX file system locally
	Developing and running on your PC instead of immediately on the target

	DISQUS

