2026-02-12 14:40 1/9 setup_development_environment

Setting up your PC as a CCGX development
environment

This page explains setting up a cross compiling environment for the CCGX. Cross compiling means
that the software is built/compiled on a different system (your computer) than the one on which it is
executed (your CCGX).

Notes:

e rebuilding the whole rootfs and image from scratch is something entirely different, explained
here: https://github.com/victronenergy/venus

* this page assumes your host pc / virtual runs linux

e it is often faster to do most development and debugging of software on your pc first. So no
cross-compiling required at first. See here.

e when looking for ordinary packages, such as git, gdb, or something else, as opposed to your
own development, make sure to have a look at all pre-compiled and available packages too.
Login to the ccgx and run this command to see available packages:

opkg list

e another alternative: compile on the ccgx itself. Use opkg to install git, make and gcc, then
checkout whatever source you want to compile. Easier than cross compiling, but can be a bit
slower :)

To cross compile, you need to setup an SDK, which contains the gcc compiler, as well as all header
files and other setup of the CCGX.

More info about what you are installing here:
http://www.yoctoproject.org/bulk/devday-eu-2014/ypdd14-hudson-sdk.pdf

BASICS - command line cross-compile

Start with the basics: cross-compile a project from the command line. This example has been made
on Ubuntu.

Then replace dash with bash:
sudo dpkg-reconfigure dash (and choose NO)
Then install all the prerequisites. For (X)Ubuntu do:

sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib
build-essential chrpath socat libsdl1l.2-dev xterm

For other distros, see the Yocto documentation for the requirements.

Victron Energy - https://www.victronenergy.com/live/

https://github.com/victronenergy/venus
http://www.yoctoproject.org/bulk/devday-eu-2014/ypdd14-hudson-sdk.pdf
https://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html#yp-resources

Last
update:
2017-06-14
11:08

Install the SDK

open_source:ccgx:setup_development_environment https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1497431299

The SDK includes the gcc compiler for the ARM processor, as well as all the needed libraries and
header files.

First, download the latest sdk here.

e Cortex A8 for the Venus gx and CCGX
e Cortex A7 for the Raspberrypi

The file needed is the one ending with .sh.

There is no need to worry about it not being the same version as the latest available CCGX firmware
version. Using the latest SDK available will be fine.

Then install it. It will ask where you want to have it installed, make sure to install the ccgx sdk in
its default location!. And, in these examples, make sure to replace v1.40 to the version you
downloaded:

chmod u+x ./venus-eglibc-i686-arm-toolchain-qte-v1.40.sh
sudo ./venus-eglibc-i686-arm-toolchain-qte-v1.40.sh

Make a symlink /opt/venus/current
sudo ln -s /opt/venus/v1.40 /opt/venus/current

Now to use this SDK, the following command is to be executed in the terminal where you also call
make or start gtcreator. This has to be done every time, but you are free to automate it of course:

source /opt/venus/current/environment-setup-armv7a-vfp-neon-ve-linux-gnueabi

Cross compile your first project

Create a file helloworld.c with the following content:
#include <stdio.h>
int main()

{
puts("hello world");

return 0;

The following is needed to compile above for a ccgx

first setup the environment:
. /opt/venus/current/environment-setup-armv7a-vfp-neon-ve-linux-gnueabi

https://www.victronenergy.com/live/ Printed on 2026-02-12 14:40

https://updates.victronenergy.com/feeds/venus/release/sdk/

2026-02-12 14:40 3/9 setup_development_environment

$CC helloworld.c -o helloworld

The resulting binary is now called helloworld. This is an ARM executable, this can be checked with

file helloworld

This should report something like: helloworld: ELF 32-bit LSB executable, ARM, EABI5 version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.16, not stripped

Cross compiling QT projects

QT projects, which are projects using 1 or more QT libraries, rely on the gmake engine. Compiling a
projects works like this:

first setup the environment:
. /opt/venus/current/environment-setup-armv7a-vfp-neon-ve-linux-gnueabi

change directory to the location of the gmake file (.pro extension)
cd <path to project file>

Run gmake to create a makefile. Use the gmake supplied with the SDK!
/opt/venus/current/sysroots/i686-ve-linux/usr/bin/gmake <project file>.pro

Build the project
make

LUXURY - now that you have done the basics, go for the IDE

Now that you have successfully compiled a project from the command-line, time for the next step.
0. Install QT Creator

sudo apt-get install qtcreator (or take latest from gt website)
To start QTCreator, start a new terminal, and execute the command
source /opt/venus/current/environment-setup-armv7a-vfp-neon-ve-linux-gnueabi

And then start gtcreater: make sure to start it from the same terminal where you typed source
fopt/venus/... !

gqtcreator

Victron Energy - https://www.victronenergy.com/live/

Last

;82?8:6—14 open_source:ccgx:setup_development_environment https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1497431299

11:08

1. Configuring QT Creator

1.1 Add the cross-compiler

Goto Options—-Build & Run-Compilers, and press Add. Select GCC as the type. And point it to:

/opt/venus/current/sysroots/i686-ve-linux/usr/bin/armv7a-vfp-neon-ve-linux-
gnueabi/arm-ve-linux-gnueabi-gcc

Result will look like this:

o Options + X
Filter " Build & Run

@ Environment 7 General Kits QtVersions @ Compilers | Debuggers CMake

Text Editor Mame Type Add i
% EakeVim ¥ Auto-detected

GCC (x86 32bit in /usr/bin) GCC lc'“il

@ Help ¥ Manual .
GCC-cogx GCC
{} C++

41 Qt Quick

Q Debugger

f Designer

! Analyzer Name: |GCC-cch

Version Cantral Compiler path: L|_|xfusn’bin.l'armv?a-vfp-neon-ve-lin|.|x-gr|ueabifarm-ve-linux-gnueabi-gcc
'ﬁ‘ Android Platform codegen flags: |

s QMK Platform linker flags: |

I Devices ABIL: |arm-|ir|u: (| arm 2 |- |linux :|-|generic 2 |- |elf -

| o | o

1.2 Add the debugger

Same screen, but one tab to the right: Debuggers. Click add and point it to:

/opt/venus/current/sysroots/i686-ve-linux/usr/bin/armv7a-vfp-neon-ve-linux-
gnhueabi/arm-ve-linux-gnueabi-gdb

1.3 Add the Qt version

Same screen, but then one tab to the left, Qt Versions. Point it to

https://www.victronenergy.com/live/ Printed on 2026-02-12 14:40

https://www.victronenergy.com/live/_media/open_source:ccgx:add-compiler.png

2026-02-12 14:40 5/9 setup_development_environment

/opt/venus/current/sysroots/i686-ve-linux/usr/bin/qmake

1.4 Prepare your CCGX

e set your own root password on the CCGX in Settings—General-Set root password. More info

here.
e enable the ssh daemon on the ccgx: Settings = General » Remote Support - Enable.

e install gdbserver: login to ccgx with ssh, and run opkg install gdbserver

root@ccgx:~# opkg install gdbserver
Installing gdbserver (7.5-r0.0) to root...

Downloading
http://updates.victronenergy.com/feeds/ccgx/1.0/release/armv/a/gdbserver 7.5

-r0.0 armv7a-vfp-neon.ipk.
Installing libthread-dbl (2.16-rl17+svnr20393) to root...

Downloading
http://updates.victronenergy.com/feeds/ccgx/1.0/release/armv7a/libthread-dbl

~2.16-r17+svnr20393 armv7a-vfp-neon.ipk.
Configuring libthread-dbl.
Configuring gdbserver.

1.5 Add the device to qtcreator

Add device, see screenshot.

v Options + X
| Devices
Iij Environment Devices
Text Editor Device: | CCGX = Add...
% FakeVim
General | LN
@ Help Name: | ccax | | Set As Default
P
1) & Type: Generic Linux
. Test
A Qt Quick Auto-detected: No
i) Current state: Unknown | Show Running Processes... |
|Q}>. Build & Run
e Deploy Public Key...
@ Debugger Type Specific | ploy ¥
. Machine type: Physical Device
‘;f Designer L -
Authentication type: * Password () Key
B Analyzer Host name: [192.168.4.162 | SSH port: |22 v| [] check host key
oy .
Version Control PV —— —|—
D—' Free ports: 10000-10100 Timeout: | 10s v|
i Android 1
Username: root
sanec QNX] =
Password: ~ [sreesnes LI Show password
h Private key file: | Create New... |
E_]Ej Code Pasting —
GDB server executable:
/% Qbs
Apply || Cancel || oK

Victron Energy - https://www.victronenergy.com/live/

https://www.victronenergy.com/live/ccgx:root_access
https://www.victronenergy.com/live/_detail/open_source:ccgx:qtcreator_devices.png?id=open_source%3Accgx%3Asetup_development_environment

Last

;82?8:6—14 open_source:ccgx:setup_development_environment https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1497431299

11:08

1.6 Add a Kit

Next add a new kit:

» select the Compiler, Debugger and Qt Version which you have created in the previous steps.
e select a sysroot: /opt/venus/current/sysroots/armv7a-vfp-neon-ve-linux-gnueabi

End result will look like this:

b Options + X
[Filter Build & Run
@ Environment 7 | General Kits | QtVersions Compilers Debuggers CMake
Text Editor Mame Add
% FakeVim ¥ Auto-detected _ o
Desktop Qt 5.5.1 GCC 32bit \—/
@ Help ¥ Manual T
ccgx (default)
{} SA7 Make Default
.f_’v] Qt Quick

MName: |cch | El
()¢ Build & Run _

File system name: | |
a Debugger Device type: | Generic Linux Device =
j Designer Device: | Generic Linux Device (default for Generic Linux) <| | Manage... |
! Analyzer Sysroot: |fc-pt.-’venus!ccgx-current.fsysromsfarm\.r?a-vfp—neon-ve-llnux-gnueabl | Browse...

-) Compiler: | GCC-cogx +| | _Manage... |
Version Control _

Environment: Mo changes to apply. Change...
i3 Android Debugger: | ceax 2| | Manage.. |
sax QNX Qt version: | ot 4.8.3 (System) +| | _Manage... |
I Devices Qt mkspec: | |

= CMake Tool: = Manage...
Code Pasting a | |

ooy et D

1.7 Try it

Now you are ready to start compiling. Open a QT project file (.pro extension) and chose the CCGX kit,
and chose Build—-Build Project. If you get an error message 'c: Command not found', you probably
forgot to run the environment script before starting QT Creator.

After a successful build deploy the executable to the CCGX (Build—»Deploy project). Note that it is not
possible to overwrite an executable that is currently running. So, for this gui example, make sure to
first stop the gui on the ccgx:

svc -d /service/gui

Cross-compile run:
Executable on device: /opt/color-control/gui

https://www.victronenergy.com/live/ Printed on 2026-02-12 14:40

https://www.victronenergy.com/live/_media/open_source:ccgx:add-kit.png

2026-02-12 14:40 7/9 setup_development_environment

1.8 Notes

When working on a velib project, make sure to change these settings in the Kit:

Remove gmake from build steps in the kit

Disable shadow build

Add ARCH=arm HOST ABI=gnueabi to the Make arguments of the build steps
For the debug build, also add BUILD=debug

Add the same to the clean steps

ke whe

And if you are going to build release builds with gtcreator, do more or less the same for that build
config.

End result will look like this:

AddKit =
Desktop Qt 5.5.1 GCC 32bit
| Manage Kits... Build | Run Build

|
)v Build Settings

Edit build configuration: |Debug 2| | Add v || Remove || Rename.. |
General
Shadow build: [
Build directory: |/home/efrank/dev/dbus_gps/software Bri
Build Steps
Make: make BUILD=debug ARCH=arm HOST_ABI=gnueabi in /home/efrank/dev/dbus_gps/software Details
Override /usr/bin/make: | | | Browse.. |
WMake arguments: I BUILD=debug ARCH=arm HOST_ABI=gnueabi |

| Add Build Step + |

Clean Steps
Make: make BUILD=debug ARCH=arm HOST_ABI=gnueabi clean in /home/efrank/dev/dbus_gps/software Details
Override /usr/bin/make: | | | Browse.. |
Make arguments: I BUILD=debug ARCH=arm HOST_ABI=gnueabi clean |

| Add Clean Step ~ |

Build Environment

Use System Environment and

Set TARGET to ccgx Details »

Victron Energy - https://www.victronenergy.com/live/

Last
update:
2017-06-14
11:08

More bits and pieces that might come in handy

open_source:ccgx:setup_development_environment https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1497431299

Mount CCGX file system locally

To save yourself some time copying files back and forth between your PC and your CCGX, for example
while editing Python code, use sshfs to mount the CCGX drive to your local machine:

mkdir ~/rem
sshfs root@ccgx:/opt/color-control ~/rem

Use fusermount -u PATH to unmount it again. or just reboot your machine.

Mounting a ubifs image

To get the right tools in ubuntu, install mtd-tuils:
sudo apt-get install mtd-utils

Info can be found on this page: http://pjankows.blogspot.nl/2012/01/how-to-mount-ubi-image.html

However, don't use mtdram, but use nandsim.

sudo modprobe ubi

sudo modprobe nandsim first id byte=0x20 second id byte=0xac
third id byte=0x00 fourth id byte=0x15

sudo flash erase /dev/mtdd 0 0O

sudo ubiformat /dev/mtdO@ -f ubi.img

sudo ubiattach -p /dev/mtdoO

sudo mount -t ubifs /dev/ubi® 0 /mnt/ubifs/

Developing and running on your PC instead of immediately on the target

Developing, running, debugging a module on your (Linux) PC is often much faster than first having it
uploaded to the CCGX everytime you want to run it. And the good news is that it is perfectly possible.

Most of our modules will run perfectly on a pc: localsettings, dbus_gps, dbus_modbustcp,
dbus_fronius, etcetera. Even the gui runs on a pc, but that is a bit more difficult since it needs some
changes which we made to the qt libraries.

Most -perhaps even all- of our D-Bus implementations (C, Cpp, Python, etc) automatically choose the
Session D-Bus instead of the System D-Bus which is used on the ccgx. This is done at either compile-
or run-time. To see what is going on on the D-Bus, use the DBusCli command-line tool. Make sure to
omit the -y commandline parameter. Tips and tricks for command line D-Bus access here.

For some modules you'll need to run localsettings on your pc. Github repo including explanation of

https://www.victronenergy.com/live/ Printed on 2026-02-12 14:40

http://pjankows.blogspot.nl/2012/01/how-to-mount-ubi-image.html
https://github.com/victronenergy/qt/commits/4.8.3_ve
https://github.com/victronenergy/qt/commits/4.8.3_ve
http://code.google.com/p/dbus-tools/wiki/DBusCli
https://www.victronenergy.com/live/open_source:ccgx:commandline

2026-02-12 14:40 9/9 setup_development_environment

what it is is here. Look for localsettings on this page for instructions on setting it up. Note that it
shouldn't be necessary to change the dbus config files! Since it will be using the (open) session dbus,
and not the system dbus which is usually locked down.

DISQUS

~~DISQUS~~

From:
https://www.victronenergy.com/live/ - Victron Energy

Permanent link:
https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1497431299 " F

Last update: 2017-06-14 11:08

Victron Energy - https://www.victronenergy.com/live/

https://github.com/victronenergy/localsettings
https://www.victronenergy.com/live/open_source:ccgx:installing_ccgx_func_on_raspberry_pi
https://www.victronenergy.com/live/
https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1497431299

	Setting up your PC as a CCGX development environment
	BASICS - command line cross-compile
	Install the SDK
	Cross compile your first project
	Cross compiling QT projects

	LUXURY - now that you have done the basics, go for the IDE
	0. Install QT Creator
	1. Configuring QT Creator
	1.1 Add the cross-compiler
	1.2 Add the debugger
	1.3 Add the Qt version
	1.4 Prepare your CCGX
	1.5 Add the device to qtcreator
	1.6 Add a Kit
	1.7 Try it
	1.8 Notes

	More bits and pieces that might come in handy
	Mount CCGX file system locally
	Mounting a ubifs image
	Developing and running on your PC instead of immediately on the target

	DISQUS

