
2025-11-11 11:20 1/9 setup_development_environment

Victron Energy - https://www.victronenergy.com/live/

Setting up your PC as a CCGX development
environment

This page explains setting up a cross compiling environment for the CCGX. Cross compiling means
that the software is built/compiled on a different system (your computer) than the one on which it is
executed (your CCGX).

Notes:

rebuilding the whole rootfs and image from scratch is something entirely different, explained
here: https://github.com/victronenergy/venus
this page assumes your host pc / virtual runs linux
it is often faster to do most development and debugging of software on your pc first. So no
cross-compiling required at first. See here.
when looking for ordinary packages, such as git, gdb, or something else, as opposed to your
own development, make sure to have a look at all pre-compiled and available packages too.
Login to the ccgx and run this command to see available packages:

opkg list

another alternative: compile on the ccgx itself. Use opkg to install git, make and gcc, then
checkout whatever source you want to compile. Easier than cross compiling, but can be a bit
slower :)

To cross compile, you need to setup an SDK, which contains the gcc compiler, as well as all header
files and other setup of the CCGX.

More info about what you are installing here:
http://www.yoctoproject.org/bulk/devday-eu-2014/ypdd14-hudson-sdk.pdf

BASICS - command line cross-compile

Start with the basics: cross-compile a project from the command line. This example has been made
on Ubuntu.

Then replace dash with bash:

sudo dpkg-reconfigure dash (and choose NO)

Then install all the prerequisites. For (X)Ubuntu do:

sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib
build-essential chrpath socat libsdl1.2-dev xterm

For other distros, see the Yocto documentation for the requirements.

https://github.com/victronenergy/venus
http://www.yoctoproject.org/bulk/devday-eu-2014/ypdd14-hudson-sdk.pdf
https://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html#yp-resources

Last
update:
2016-08-24
14:45

open_source:ccgx:setup_development_environment https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1472042710

https://www.victronenergy.com/live/ Printed on 2025-11-11 11:20

Install the SDK

The SDK includes the gcc compiler for the ARM processor, as well as all the needed libraries and
header files.

First, download the latest sdk here. It will be a file ending with .sh, for example “venus-eglibc-i686-
arm-toolchain-qte-v1.40.sh”. There is no need to worry about it not being the same version as the
latest available CCGX firmware version. Using the latest SDK available will be fine.

Then install it. It will ask where you want to have it installed, make sure to install the ccgx sdk in
its default location!. And, in these examples, make sure to replace v1.40 to the version you
downloaded:

chmod u+x ./venus-eglibc-i686-arm-toolchain-qte-v1.40.sh
sudo ./venus-eglibc-i686-arm-toolchain-qte-v1.40.sh

Make a symlink /opt/venus/current

sudo ln -s /opt/venus/v1.40 /opt/venus/current

Now to use this SDK, the following command is to be executed in the terminal where you also call
make or start qtcreator. This has to be done every time, but you are free to automate it of course:

source /opt/venus/current/environment-setup-armv7a-vfp-neon-ve-linux-gnueabi

Cross compile your first project

Create a file helloworld.c with the following content:

#include <stdio.h>

int main()
{
 puts("hello world");
 return 0;
}

The following is needed to compile above for a ccgx

first setup the environment:
. /opt/venus/current/environment-setup-armv7a-vfp-neon-ve-linux-gnueabi

$CC helloworld.c -o helloworld

The resulting binary is now called helloworld. This is an ARM executable, this can be checked with

file helloworld

https://updates.victronenergy.com/feeds/ccgx/images/

2025-11-11 11:20 3/9 setup_development_environment

Victron Energy - https://www.victronenergy.com/live/

This should report something like: helloworld: ELF 32-bit LSB executable, ARM, EABI5 version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.16, not stripped

Cross compiling QT projects

QT projects, which are projects using 1 or more QT libraries, rely on the qmake engine. Compiling a
projects works like this:

first setup the environment:
. /opt/venus/current/environment-setup-armv7a-vfp-neon-ve-linux-gnueabi

change directory to the location of the qmake file (.pro extension)
cd <path to project file>

Run qmake to create a makefile. Use the qmake supplied with the SDK!
/opt/venus/current/sysroots/i686-ve-linux/usr/bin/qmake <project file>.pro

Build the project
make

LUXURY - now that you have done the basics, go for the IDE

Now that you have successfully compiled a project from the command-line, time for the next step.

0. Install QT Creator

sudo apt-get install qtcreator (or take latest from qt website)

To start QTCreator, start a new terminal, and execute the command

source /opt/venus/current/environment-setup-armv7a-vfp-neon-ve-linux-gnueabi

And then start qtcreater: make sure to start it from the same terminal where you typed source
/opt/venus/… !

qtcreator

1. Configuring QT Creator

1.1 Add the cross-compiler

Goto Options→Build & Run→Compilers, and press Add. Select GCC as the type. And point it to:

/opt/venus/current/sysroots/i686-ve-linux/usr/bin/armv7a-vfp-neon-ve-linux-

Last
update:
2016-08-24
14:45

open_source:ccgx:setup_development_environment https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1472042710

https://www.victronenergy.com/live/ Printed on 2025-11-11 11:20

gnueabi/arm-ve-linux-gnueabi-gcc

Result will look like this:

1.2 Add the debugger

Same screen, but one tab to the right: Debuggers. Click add and point it to:

/opt/venus/current/sysroots/i686-ve-linux/usr/bin/armv7a-vfp-neon-ve-linux-
gnueabi/arm-ve-linux-gnueabi-gdb

1.3 Add the Qt version

Same screen, but then one tab to the left, Qt Versions. Point it to

/opt/venus/current/sysroots/i686-ve-linux/usr/bin/qmake

1.4 Prepare your CCGX

set your own root password on the CCGX in Settings→General→Set root password. More info
here.

https://www.victronenergy.com/live/_media/open_source:ccgx:add-compiler.png
https://www.victronenergy.com/live/ccgx:root_access

2025-11-11 11:20 5/9 setup_development_environment

Victron Energy - https://www.victronenergy.com/live/

enable the ssh daemon on the ccgx: Settings → General → Remote Support → Enable.
install gdbserver: login to ccgx with ssh, and run opkg install gdbserver

root@ccgx:~# opkg install gdbserver
Installing gdbserver (7.5-r0.0) to root...
Downloading
http://updates.victronenergy.com/feeds/ccgx/1.0/release/armv7a/gdbserver_7.5
-r0.0_armv7a-vfp-neon.ipk.
Installing libthread-db1 (2.16-r17+svnr20393) to root...
Downloading
http://updates.victronenergy.com/feeds/ccgx/1.0/release/armv7a/libthread-db1
_2.16-r17+svnr20393_armv7a-vfp-neon.ipk.
Configuring libthread-db1.
Configuring gdbserver.

1.5 Add the device to qtcreator

Add device, see screenshot.

1.6 Add a Kit

Next add a new kit:

select the Compiler, Debugger and Qt Version which you have created in the previous steps.
select a sysroot: /opt/venus/current/sysroots/armv7a-vfp-neon-ve-linux-gnueabi

https://www.victronenergy.com/live/_detail/open_source:ccgx:qtcreator_devices.png?id=open_source%3Accgx%3Asetup_development_environment

Last
update:
2016-08-24
14:45

open_source:ccgx:setup_development_environment https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1472042710

https://www.victronenergy.com/live/ Printed on 2025-11-11 11:20

End result will look like this:

1.7 Try it

Now you are ready to start compiling. Open a QT project file (.pro extension) and chose the CCGX kit,
and chose Build→​Build Project. If you get an error message 'c: Command not found',​ you probably
forgot to run the environment script before starting QT Creator.

After a successful build deploy the executable to the CCGX (Build→​Deploy project). Note that it is not
possible to overwrite an executable that is currently running. So, for this gui example, make sure to
first stop the gui on the ccgx:

svc -d /service/gui

Cross-compile run:
Executable on device: /opt/color-control/gui

1.8 Notes

When working on a velib project, make sure to change these settings in the Kit:

Remove qmake from build steps in the kit1.
Disable shadow build2.

https://www.victronenergy.com/live/_media/open_source:ccgx:add-kit.png

2025-11-11 11:20 7/9 setup_development_environment

Victron Energy - https://www.victronenergy.com/live/

Add ARCH=arm HOST_ABI=gnueabi to the Make arguments of the build steps3.
For the debug build, also add BUILD=debug4.
Add the same to the clean steps5.

And if you are going to build release builds with qtcreator, do more or less the same for that build
config.

End result will look like this:

More bits and pieces that might come in handy

Mount CCGX file system locally

To save yourself some time copying files back and forth between your PC and your CCGX, for example
while editing Python code, use sshfs to mount the CCGX drive to your local machine:

Last
update:
2016-08-24
14:45

open_source:ccgx:setup_development_environment https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1472042710

https://www.victronenergy.com/live/ Printed on 2025-11-11 11:20

 mkdir ~/rem
 sshfs root@ccgx:/opt/color-control ~/rem

Use fusermount -u PATH to unmount it again. or just reboot your machine.

Mounting a ubifs image

To get the right tools in ubuntu, install mtd-tuils:

sudo apt-get install mtd-utils

Info can be found on this page: http://pjankows.blogspot.nl/2012/01/how-to-mount-ubi-image.html

However, don't use mtdram, but use nandsim.

sudo modprobe ubi
sudo modprobe nandsim first_id_byte=0x20 second_id_byte=0xac
third_id_byte=0x00 fourth_id_byte=0x15
sudo flash_erase /dev/mtd0 0 0
sudo ubiformat /dev/mtd0 -f ubi.img
sudo ubiattach -p /dev/mtd0
sudo mount -t ubifs /dev/ubi0_0 /mnt/ubifs/

Developing and running on your PC instead of immediately on the target

Developing, running, debugging a module on your (Linux) PC is often much faster than first having it
uploaded to the CCGX everytime you want to run it. And the good news is that it is perfectly possible.

Most of our modules will run perfectly on a pc: localsettings, dbus_gps, dbus_modbustcp,
dbus_fronius, etcetera. Even the gui runs on a pc, but that is a bit more difficult since it needs some
changes which we made to the qt libraries.

Most -perhaps even all- of our D-Bus implementations (C, Cpp, Python, etc) automatically choose the
Session D-Bus instead of the System D-Bus which is used on the ccgx. This is done at either compile-
or run-time. To see what is going on on the D-Bus, use the DBusCli command-line tool. Make sure to
omit the -y commandline parameter. Tips and tricks for command line D-Bus access here.

For some modules you'll need to run localsettings on your pc. Github repo including explanation of
what it is is here. Look for localsettings on this page for instructions on setting it up. Note that it
shouldn't be necessary to change the dbus config files! Since it will be using the (open) session dbus,
and not the system dbus which is usually locked down.

DISQUS

~~DISQUS~~

http://pjankows.blogspot.nl/2012/01/how-to-mount-ubi-image.html
https://github.com/victronenergy/qt/commits/4.8.3_ve
https://github.com/victronenergy/qt/commits/4.8.3_ve
http://code.google.com/p/dbus-tools/wiki/DBusCli
https://www.victronenergy.com/live/open_source:ccgx:commandline
https://github.com/victronenergy/localsettings
https://www.victronenergy.com/live/open_source:ccgx:installing_ccgx_func_on_raspberry_pi

2025-11-11 11:20 9/9 setup_development_environment

Victron Energy - https://www.victronenergy.com/live/

From:
https://www.victronenergy.com/live/ - Victron Energy

Permanent link:
https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1472042710

Last update: 2016-08-24 14:45

https://www.victronenergy.com/live/
https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1472042710

	Setting up your PC as a CCGX development environment
	BASICS - command line cross-compile
	Install the SDK
	Cross compile your first project
	Cross compiling QT projects

	LUXURY - now that you have done the basics, go for the IDE
	0. Install QT Creator
	1. Configuring QT Creator
	1.1 Add the cross-compiler
	1.2 Add the debugger
	1.3 Add the Qt version
	1.4 Prepare your CCGX
	1.5 Add the device to qtcreator
	1.6 Add a Kit
	1.7 Try it
	1.8 Notes

	More bits and pieces that might come in handy
	Mount CCGX file system locally
	Mounting a ubifs image
	Developing and running on your PC instead of immediately on the target

	DISQUS

