2026-02-12 14:38 1/7 setup_development_environment

Setting up your PC as a CCGX development
environment

This page explains setting up a cross compiling environment for the CCGX. Cross compiling means
that the software is built/compiled on a different system (your computer) than the one on which it is
executed (your CCGX).

Notes:

e rebuilding the whole rootfs and image from scratch is something entirely different, explained
here: https://github.com/victronenergy/venus

* this page assumes your host pc / virtual runs linux

e it is often faster to do most development and debugging of software on your pc first. So no
cross-compiling required at first. See here.

e when looking for ordinary packages, such as git, gdb, or something else, as opposed to your
own development, make sure to have a look at all pre-compiled and available packages too.
Login to the ccgx and run this command to see available packages:

opkg list
e another alternative: compile on the ccgx itself. Use opkg to install git, make and gcc, then

checkout whatever source you want to compile. Easier than cross compiling, but can be a bit
slower :)

To cross compile, you need to setup an SDK, which contains the gcc compiler, as well as all header
files and other setup of the CCGX.

BASICS - command line cross-compile

Start with the basics: cross-compile a project from the command line. This example has been made
on Ubuntu.

Then replace dash with bash:
sudo dpkg-reconfigure dash (and choose NO)
Then install all the prerequisites. For (X)Ubuntu do:

sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib
build-essential chrpath socat libsdl1l.2-dev xterm

For other distros, see the Yocto documentation for the requirements.

Install the SDK

The SDK includes the gcc compiler for the ARM processor, as well as all the needed libraries and

Victron Energy - https://www.victronenergy.com/live/


https://github.com/victronenergy/venus
https://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html#yp-resources

Last
update:
2016-05-31
10:50

open_source:ccgx:setup_development_environment https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1464684650

header files.

First, download the latest sdk here.Don't forget to download the .sh file as well (e.g. “.venus-eglibc-
i686-arm-toolchain-qte-v1.40.sh”).

Then install it. It will ask where you want to have it installed. And make sure to replace v1.40 to the
version you downloaded:

chmod u+x ./venus-eglibc-i686-arm-toolchain-qte-v1.40.sh
sudo ./venus-eglibc-i686-arm-toolchain-qte-v1.40.sh

Make a symlink /opt/venus/current
sudo ln -s /opt/venus/v1.40 /opt/venus/current

Now to use this SDK, the following command is to be executed in the terminal where you also call
make or start gtcreator. This has to be done every time, but you are free to automate it of course:

source /opt/venus/current/environment-setup-armv7a-vfp-neon-ve-linux-gnueabi

Cross compile your first project

Create a file helloworld.c with the following content:
#include <stdio.h>
int main()

{
puts("hello world");

return 0;
The following is needed to compile above for a ccgx

# first setup the environment:
. /opt/venus/current/environment-setup-armv7a-vfp-neon-ve-linux-gnueabi

$CC helloworld.c -o helloworld
The resulting binary is now called helloworld. This is an ARM executable, this can be checked with
file helloworld

This should report something like: helloworld: ELF 32-bit LSB executable, ARM, EABI5 version 1
(SYSV), dynamically linked (uses shared libs), for GNU/Linux 2.6.16, not stripped

https://www.victronenergy.com/live/ Printed on 2026-02-12 14:38


https://updates.victronenergy.com/feeds/ccgx/images/

2026-02-12 14:38 3/7 setup_development_environment

Cross compiling QT projects

QT projects, which are projects using 1 or more QT libraries, rely on the gmake engine. Compiling a
projects works like this:

# first setup the environment:
. /opt/venus/current/environment-setup-armv7a-vfp-neon-ve-linux-gnueabi

# change directory to the location of the gmake file (.pro extension)
cd <path to project file>

# Run gmake to create a makefile. Use the gmake supplied with the SDK!
/opt/venus/current/sysroots/i686-ve-linux/usr/bin/qmake <project file>.pro

# Build the project
make

LUXURY - now that you have done the basics, go for the IDE

Now that you have successfully compiled a project from the command-line, time for the next step.

Install QT Creator:
sudo apt-get install qtcreator (or take latest from gt website)

TODO: move this: For example the CCGX GUI project (note that this is not an open source project,
yet!):

git clone --recursive https://git.victronenergy.com/ccgx/gui.git
~/dev/ccgx/gui

To see on which branch you are:
git status

Open a new terminal and set the environment:

77

Setup tools and compile the GUI project with QT Creator

To start QTCreator, start a new terminal, and execute the command
source /opt/venus/current/environment-setup-armv7a-vfp-neon-ve-linux-gnueabi

And then start gtcreater: make sure to start it from the same terminal where you typed source

Victron Energy - https://www.victronenergy.com/live/



Last

5832%331 open_source:ccgx:setup_development_environment https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1464684650

10:50

fopt/venus/... !

gtcreator

1. Configuring QT Creator

1.1 Add the cross-compiler

Goto Options—-Build & Run-Compilers, and press Add. Select GCC as the type. And point it to:

/opt/venus/current/sysroots/i686-ve-linux/usr/bin/armv7a-vfp-neon-ve-linux-
gnueabi/arm-ve-linux-gnueabi-gcc

Result will look like this:

1.2 Add the Qt version

Same screen, but then one tab to the left, Qt Versions. Point it to
/opt/venus/current/sysroots/i686-ve-linux/usr/bin/gmake

Next add a new kit which uses the compiler and the QT version you just created.

Add device, see screenshot. You can set your own root password on the CCGX in
Settings—»General-Set root password. More info here. Also you'll need to enable the ssh server on the
CCGX: Settings = General = Remote Support = Enable.

https://www.victronenergy.com/live/ Printed on 2026-02-12 14:38


https://www.victronenergy.com/live/_media/open_source:ccgx:add-compiler.png
https://www.victronenergy.com/live/ccgx:root_access

2026-02-12 14:38 5/7 setup_development_environment

~ Options + X
Devices
|§J Environment Devices
Text Editor Device: | CCGX = Add...
% FakeVim
General | Wi
@ Help [ [ccox [ Set As Default
7
g ¢+ Type: Generic Linux -
| Qt Quick Auto-detected: No
- ) Current state: Unknown | Show Running Processes... |
|Q’>, Build & Run
. Deploy Public Key...
Q Debugger Type Specific
. Machine type: Physical Device
‘if Designer . _
Authentication type: *) Password () Key
BB Analyzer Host name: [192.168.4.162 | 55H port: |22 :| [] check host key
Ly . —
D—' Version Control Free ports: 10000-10100 Timeout: | 10s v|
i) Android ]
Username: root
sanx QNX —
Password: ~ [seeeeses | Show password
h Private key file: | Create New...
Eﬁ Code Pasting —
GDEB server executable:

/% Qbs

Apply || Cancel || OK

Now you are ready to start compiling. Open a QT project file (.pro extension) and chose the CCGX kit,
and chose Build—Build Project. If you get an error message 'c: Command not found', you probably
forgot to run the environment script before starting QT Creator.

After a successful build deploy the executable to the CCGX (Build—Deploy project). Note that it is not
possible to overwrite an executable that is currently running. So, for this gui example, make sure to
first stop the gui on the ccgx:

svc -d /service/gui

Cross-compile run:
Executable on device: /opt/color-control/gui

Cross-compile debug:
To debug on the target, you need to install gdbserver on the ccgx. Login with ssh, and then install
gdbserver:

opkg install gdbserver

More bits and pieces that might come in handy

Mount CCGX file system locally

To save yourself some time copying files back and forth between your PC and your CCGX, for example

Victron Energy - https://www.victronenergy.com/live/


https://www.victronenergy.com/live/_detail/open_source:ccgx:qtcreator_devices.png?id=open_source%3Accgx%3Asetup_development_environment

Last
update:
2016-05-31
10:50

open_source:ccgx:setup_development_environment https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1464684650

while editing Python code, use sshfs to mount the CCGX drive to your local machine:

mkdir ~/rem
sshfs root@ccgx:/opt/color-control ~/rem

Use fusermount -u PATH to unmount it again. or just reboot your machine.

Mounting a ubifs image

To get the right tools in ubuntu, install mtd-tuils:
sudo apt-get install mtd-utils

Info can be found on this page: http://pjankows.blogspot.nl/2012/01/how-to-mount-ubi-image.html

However, don't use mtdram, but use nandsim.

sudo modprobe ubi

sudo modprobe nandsim first id byte=0x20 second id byte=0xac
third id byte=0x00 fourth id byte=0x15

sudo flash erase /dev/mtd0 0 0

sudo ubiformat /dev/mtd® -f ubi.img

sudo ubiattach -p /dev/mtdoO

sudo mount -t ubifs /dev/ubi@ 0 /mnt/ubifs/

Developing and running on your PC instead of immediately on the target

Developing, running, debugging a module on your (Linux) PC is often much faster than first having it
uploaded to the CCGX everytime you want to run it. And the good news is that it is perfectly possible.

Most of our modules will run perfectly on a pc: localsettings, dbus_gps, dbus_modbustcp,
dbus_fronius, etcetera. Even the gui runs on a pc, but that is a bit more difficult since it needs some
changes which we made to the qt libraries.

Most -perhaps even all- of our D-Bus implementations (C, Cpp, Python, etc) automatically choose the
Session D-Bus instead of the System D-Bus which is used on the ccgx. This is done at either compile-
or run-time. To see what is going on on the D-Bus, use the DBusCli command-line tool. Make sure to
omit the -y commandline parameter. Tips and tricks for command line D-Bus access here.

For some modules you'll need to run localsettings on your pc. Github repo including explanation of
what it is is here. Look for localsettings on this page for instructions on setting it up. Note that it
shouldn't be necessary to change the dbus config files! Since it will be using the (open) session dbus,
and not the system dbus which is usually locked down.

https://www.victronenergy.com/live/ Printed on 2026-02-12 14:38


http://pjankows.blogspot.nl/2012/01/how-to-mount-ubi-image.html
https://github.com/victronenergy/qt/commits/4.8.3_ve
https://github.com/victronenergy/qt/commits/4.8.3_ve
http://code.google.com/p/dbus-tools/wiki/DBusCli
https://www.victronenergy.com/live/open_source:ccgx:commandline
https://github.com/victronenergy/localsettings
https://www.victronenergy.com/live/open_source:ccgx:installing_ccgx_func_on_raspberry_pi

2026-02-12 14:38 7/7 setup_development_environment

DISQUS

~~DISQUS~~

From:
https://www.victronenergy.com/live/ - Victron Energy

Permanent link:
https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1464684650

Last update: 2016-05-31 10:50

Victron Energy - https://www.victronenergy.com/live/


https://www.victronenergy.com/live/
https://www.victronenergy.com/live/open_source:ccgx:setup_development_environment?rev=1464684650

	Setting up your PC as a CCGX development environment
	BASICS - command line cross-compile
	Install the SDK
	Cross compile your first project
	Cross compiling QT projects

	LUXURY - now that you have done the basics, go for the IDE
	Setup tools and compile the GUI project with QT Creator
	1. Configuring QT Creator
	1.1 Add the cross-compiler
	1.2 Add the Qt version


	More bits and pieces that might come in handy
	Mount CCGX file system locally
	Mounting a ubifs image
	Developing and running on your PC instead of immediately on the target

	DISQUS


