Victron & Cegasa

Battery	eBick Ultra 175	eBick 280 Pro
Appearance		
ESS	yes	yes
Grid Backup	yes	yes
Off-Grid	yes	yes
Module capacity	13,5 kWh	13.5 kWh
Module limit	4	18
Max capacity	54 kWh	243 kWh

1. Product & System compatibility

1.1 Offgrid, Backup and Energy Storage Systems (ESS)

Victron + Cegasa eBick can be used for the following system types:

- Energy Storage Systems Self Consumption (ESS Start page)
- Grid Backup
- Off-grid

Special note for Off-Grid systems

For Off-grid systems, its strongly recommend to make sure there is a minimum of DC-Coupled PV (= MPPT Solar Charger) in the system. le. not only AC-Coupled PV. Also, minimum battery configuration, and factor 1.0 are always important to adhere to, and even more so in case of Off-grid systems. Both Cegasa and Victron will be reluctant or even refusing to give support to systems that are not sized according to the minimum battery configuration table.

1.2 A GX device is required, eg Cerbo GX, etc

It is essential to use the BMS-Can (or CAN-bus) connection of a GX device with the Cegasa batteries for the keep-alive signal, communication of charge and discharge limits, error codes and state of charge. This is set to 500 kbit/s.

When used with Cegasa batteries, the minimum supported firmware version for the GX device is v2.22. It is recommended to use the latest firmware version on new installations and when trouble shooting issues.

1.3 All 48V Multis, MultiPlusses, MultiGrids, Quattros and RS models are compatible

The minimum supported firmware version is 469. Updating to the latest firmware is recommended for

new installations, and troubleshooting issues.

These inverter/charger units must be connected to the GX device via the VE.Bus connection port.

In grid connected systems, advanced control functions are configurable in the ESS settings on the GX device.

In off-grid systems, the control functions of the Battery Management System (BMS) are built into the latest version of the GX device.

1.4 Solar Charger compatibility

All current model 48V BlueSolar and SmartSolar VE.Direct MPPT Chargers are compatible.

Some of our Solar Chargers feature a VE.Direct communication port, some feature a VE.Can communication port, and some feature both. Both of these types of communication ports can be used to connect the Solar charger to the GX Device. Such connection is mandatory, because it is used to regulate charge currents and voltages.

When planning to use the VE.Can communications port to connect the Solar Charger(s), make sure to select a GX Device that has sufficient CAN-Bus ports. The Color Control GX has only one such port, its VE.Can port, and is therefor not suitable. All other GX Devices can be used, since they have two ports. One can then be used to connect the Cegasa battery, and the other to connect the Solar Charger.

1.5 Battery compatibility

The following batteries are supported:

Cegasa series type
eBick Ultra 175
eBick Pro 280

The Ultra 175 module has an external BMS unit connecting to the Victron GX device.

The Pro 280 model has an external BMS cabinet which connects to the Victron GX device.

Victron is not compatible with the Cegasa high voltage configuration where battery voltage is increased beyond 48V nominal.

See the Cegasa manuals for more details.

2. Minimum Battery Sizing

The following information is provided by Cegasa, it is reproduced here for your convenience and should always be confirmed with the latest Cegasa manuals and specifications.

Each Cegasa eBick battery module is approximately 280Ah at 48V (52.2V maximum).

The allowable charge and discharge rates are managed automatically by the Cegasa BMS and GX device. Temperature effects on charge rates should be considered in the design stage in hot and cold climates.

Using very large solar arrays with battery banks that are too small can exceed the limits of the batteries ability to charge and possibly lead to the BMS triggering over-current alarms, and system shutdowns.

The table below shows the minimum number of battery modules required for the specified inverter/charger configuration in normal conditions.

Battery Modules Required - Ultra 175

Phases	Single Phase	Three Phase	Single Phase	Three Phase
Inverter/Charger	ESS	ESS	Off-grid	Off-grid
Multiplus & Multiplus II & MP-II GX 48/3000/35	1	2	1	2
Multiplus & Multiplus II & MP-II GX 48/5000/70	1	2	1	2
Inverter RS & Multi RS 48/6000	1	-	1	-
Quattro 48/5000/70-100/100	1	2	1	2
Quattro 48/8000/110-100/100	2	3	2	4
Quattro 48/10000/140- 100/100	2	4	2	-
Quattro 48/15000/200- 100/100	3	4	3	-
EasySolar & EasySolar-II 48/3000/35-50 MPPT	1	2	1	2
EasySolar 48/5000/70-100 MPPT	1	2	1	2

Battery Modules Required - Pro 280

Phases	Single Phase	Three Phase	Single Phase	Three Phase
Inverter/Charger	ESS	ESS	Off-grid	Off-grid
Multiplus & Multiplus II & MP-II GX 48/3000/35	1	2	1	2
Multiplus & Multiplus II & MP-II GX 48/5000/70	1	2	1	2
Inverter RS & Multi RS 48/6000	1	-	1	-
Quattro 48/5000/70-100/100	1	2	1	2
Quattro 48/8000/110-100/100	2	3	2	4
Quattro 48/10000/140- 100/100	2	4	2	5
Quattro 48/15000/200- 100/100	3	4	3	7
EasySolar & EasySolar-II 48/3000/35-50 MPPT	1	2	1	2
EasySolar 48/5000/70-100 MPPT	1	2	1	2

Note, Cegasa eBick 280 Pro product documentation mentions up 2-3 MWh capacity, this is due to the ability of the eBick 280 Pro to be able to be installed in series as well as parallel, HOWEVER Victron systems do NOT support the series connection configuration, hence the lower max 18 module capacity limit.

3. CAN-Bus wiring between the battery and GX Device

Please note - Initial configuration is required via the the Cegasa application first - this is not

documented here and will need to be followed first in their product documentation.

This documentation is only covering the Victron side of the system commissioning.

Cegasa BMS to GX device wiring is made with a normal straight through CAT5e/6 RJ45 ethernet networking cable.

Without properly connecting this cable, the battery will not show up on the display of the GX device. The battery will also turn itself off after several minutes.

Neither of the specially wired type A or type B Victron BMS cables are used with the Cegasa BMS.

It is important to ensure this connection and display of the battery on the GX device display before attempting firmware updates or settings changes on other devices if they depend on the power supply from the battery. Without this connection, the battery may turn off unexpectedly.

4. VEConfigure settings

This section presumes familiarity with VEConfigure software.

4.1 General tab

- Check the "Enable battery monitor" function
- Set the battery capacity to the total capacity of the battery: eg 280Ah times the number of battery modules
- Charge Efficiency to 95%
- The other parameters ("State of charge when bulk finished") can be left to their default setting.

4.2 Charge parameters

In normal operation with DVCC operational, the charge parameters are controlled by the BMS and communicated through the system by the GX device to the inverter/charger and MPPT. However as a precaution it is advised to set these as suggested below.

Charger tab

VEConfigure Charge Parameter	Setting
Battery type	Lithium
Charge curve	Adaptive
Absorption voltage	52.2 V
Float voltage (1)	52 V
Absorption time	8 Hr
Charge Current	30-50A per battery module

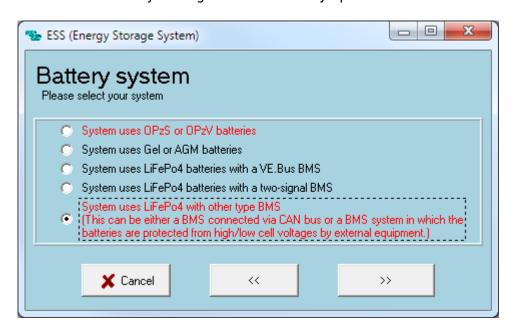
Notes:

1. make sure to double check the float voltage after completing Assistants, and if necessary set it back to 52 V.

4.3 Inverter Settings

In the Inverter tab of VEConfigure

VEConfigure Inverter Parameter	Setting
DC input low shut-down	44V
DC input low restart	50V
DC input low pre-alarm*	45V


* The pre-alarm setting is dependant on your preference and on site specific requirements. You may wish for this to be activated earlier in an off grid situation to allow time to start a backup generator. If the system is configured in ESS mode, you may not wish to have this alarm trigger until below the Sustain threshold voltage, as this system is in no danger normally and will 'sustain' without needing to trigger an alarm.

ESS System Settings

If you are using the battery as part of a grid connected ESS system, please review the ESS Quickstart guide and Design and Installation Manual.

The settings that are specific to the Cegasa battery in the VEConfigure ESS Assistant are below:

Select the externally managed Lithium battery option

ESS Parameter	Settings
Battery Capacity	180 Ah
Sustain voltage.	52V
Dynamic cut-off values	Voltage
0.05	47V

ESS Parameter	Settings
0.2	44V
0.7	43.5V
2	42.5V
Restart offset:	1.2 V (Default)

5. GX device configuration


As of GX firmware version 2.90, and the Cegasa battery is connected to the GX device BMS-Can port, the following DVCC settings will be set and enforced automatically.

If you are running a GX firmware version prior to this,

On the GX device, go to Settings, System setup:

Venus Settings → System Setup Parameter	Value
DVCC	ON
Shared Voltage Sense	OFF
Shared Temperature Sense	OFF

- * Select the CAN-bus BMS (500 kbit/s) CAN-profile in the GX device. Menu path: Settings → Services → CAN-profile.
 - After properly wiring and setting up, the battery will be visible as a battery in the device list:

(if you have multiple batteries a single entry will show up, which represents all batteries).

 The parameters option within the battery page shows the actual battery charge and discharge limits

This parameters page is also a good place to check that all batteries are connected and working properly.

In normal working conditions, the charge current limit is \sim 140 A per module. For example, 280A charge current limit (280 / 140 = 2) means there are 2 Cegasa battery cells connected.

Note these for the Ultra 175 model, these charge current limits are non-linear. 1 module is 140 A, 2 modules is 280 A, 3 is 400A & 4 is 475A

2025-12-03 06:27 7/9 Victron & Cegasa

GX Device with multiple CAN-bus port configuration

With GX devices that have two CAN-bus interfaces available (eg Cerbo GX and Venus GX), the VE.Can MPPT will remain connected to the VE.Can port, while the BMS cable should use the specific BMS-Can.

This allows data from the MPPT and battery simultaneously.

Color Control GX Configuration - Not Recommended

The CCGX only has one available VE.Can interface. It is not possible to connect both CAN products such as VE.Can MPPT (250 kbit/s) and a Cegasa battery BMS-Can CAN-bus (500 kbit/s) together on the CCGX. As the Battery MUST be connected, you will need to use the port for that. This will mean no data is collected from the VE.Can MPPT, nor can the CCGX control it, so they cannot be used.

For this reason it is recommended to use the Cerbo GX instead.

6. Solar Charging

6.1 Victron MPPT charger settings

Victron MPPT charge characteristics are automatically configured & governed by the GX device. The settings below are a precautionary measure only:

MPPT Parameter	Setting
Battery voltage	48V
Maximum Charge current	50A per battery module
Absorption voltage	52V
Floating Voltage	51.8V

Use VictronConnect for Solar Charger configuration.

6.2 Self-Startup from Low voltage shutdown modes

In a correctly configured system, the inverter will shut itself down before the batteries enter a self protective shut down state.

Therefore it is essential that there is also either a generator or DC MPPT charge controller for overall system stability. If your system is charged only with an AC-coupled PV inverter, this may prevent the AC-coupled PV inverter from starting up to recharge the batteries.

Even a single 100/20~48V MPPT charger unit with 2~x~60 cell solar panels would be sufficient to add this self correcting mechanism able to maintain the DC bus voltage and improve longterm system reliability considerably from accidental deep discharge and subsequent shut down.

8. Troubleshooting

If the system is not operating correctly, go through these steps.

Step 0. If the Inverter/Charger or GX device does not switch on

As a safety precaution, the inverter/charger will not switch on if the GX device is not on. If you are unable to start the system due to a total system blackout / battery shutdown due to low voltage, you may need to disconnect the VE.BUS connection cable between the inverter/charger and GX device.

You can then start the inverter/charger from an external charge source such as a generator or grid connection. Once the inverter/charger has started, it should supply power to the DC terminals and this should start the GX device and battery again. You will need to then reconnect the VE.Bus Communications cable back to the inverter/charger and GX device.

Step 1. Check that the battery is visible on the GX device list

If its not visible, check:

- GX device firmware version (update to latest version, v2.22 or later)
- CAN-bus communication cabling between Battery and Victron system.

Step 2. Check that the battery is ready for use

Check the Max Charge Voltage parameter. This voltage parameter is sent, together with the other three parameters, by the Cagasa system via the CAN-bus cable. They are visible on the GX device: Device List \rightarrow battery \rightarrow Parameters menu.

When ready for use, the Max Charge Voltage will read 52.2 V. In case there is an error in the battery system (wiring, addressing, or other), it will be 0 V.

Also check that your are seeing the expected discharge current per installed module.

2025-12-03 06:27 9/9 Victron & Cegasa

10. Known Issues with Cegesa models

There are no known issues with the Cegasa battery modules, however previous issues have been addressed in firmware updates, so please make sure you are running the most recently available version before investigating other causes.

10.3 Cold Weather Performance

The Cegasa cells will limit the charge current allowed at lower temperatures.

Temperature (Celsius)	Charge Current Limit
Under 0 degrees C	0C
0-10 degrees C	0.2-0.3C
11-46 degrees C	0.5C
47-65 degrees C	0.3C
Over 65 degrees C	0C

Note an additional limitation applies at the start and the end of the charge cycle - see product documentation for more details.

Keep your batteries in a climate controlled environment as close to 20 degrees celsius as possible for best performance. Depending on your climate, consider insulation and reverse cycle air-conditioning to prevent issues in hot and cold weather.

Cells will also heat themselves up when charged and discharged.

12. Further Information

For information about where to buy or find suitably qualified installers, visit the Where to Buy Page.

Further community discussion about installing and using Cegasa and Victron can found at Victron Community, use the topic label 'Cegasa'.

From:

https://www.victronenergy.com/live/ - Victron Energy

Permanent link:

https://www.victronenergy.com/live/battery_compatibility:cegasa?rev=1653042698

Last update: 2022-05-20 12:31

